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Abstract 
 

Sampling is informative when probabilities of sample inclusion depend on unknown variables 

that are correlated with a response variable of interest. This can be a problem when the 

sample data analyst only has access to secondary data sources for controlling the impact of 

the sampling method. When sample inclusion probabilities are available, inverse probability 

weighting can be used to account for informative sampling in a secondary analysis situation, 

though usually at the cost of less precise inference. This paper reviews two important research 

contributions by Chris Skinner that modify these weights to reduce their variability while at 

the same time retaining consistency of the weighted estimators. In some cases, however, 

sample inclusion probabilities are not known, and are estimated based on the observed 

sample. This can be an issue in causal analysis, and double robust methods that protect 

against misspecification of the sampling process have been the focus of much recent research. 

In this paper we propose a simple model-based modification to the popular inverse probability 

weighted estimator of an average treatment effect, and then illustrate its use in a causal 

analysis of a rainfall enhancement experiment that was carried out in Oman between 2013 and 

2018. 

 

Key Words: Inverse probability weighting; weight modification; double robustness; average 

treatment effect; model-based analysis; model-assisted estimation; observational data 

analysis; cloud ionization. 
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1. Introduction 
 

1.1 A brief background on sample weighting and inference 

 

Weighting is at the core of sampling inference. Virtually every procedure used to make an 

inference about a population of interest based on data obtained from a sample of population 

units depends on the statistic  being a consistent estimator of the expected 

value  of the finite population mean . Here U denotes the finite population 

of interest, N is the population size,  is a sample inclusion indicator that takes the value 1 if 

unit i is in sample and the value zero otherwise, and  is a generic variable value observed 

for each sample unit and assumed to be observable for any population unit. The set of n 

population units making up the sample is the largest set , and is denoted s. The 

sample weights  are assumed to be known for each sample unit, and are also assumed to be 

computable for any population unit i and any sample s. Definition of  depends to a large 

extent on the type of inference that one wishes to make about . If one replaces  by  as 

the target of inference then inference is said to be enumerative, while if  remains as the 

target then inference is often referred to as analytic. We will be concerned with analytic 

inference in this paper. 

 

In the case of enumerative inference there are two major approaches. The oldest, first 

proposed in Neyman (1934), only allows random variation in  as a consequence of 

variation in the sample inclusion indicators . That is, the only uncertainty is the outcome of 

the sampling process. All other finite population measurements, and in particular the values 

, are considered to be fixed. This is essentially non-parametric inference, typically referred 

to as design-based. Within the last half century however, it has become more common to 

allow joint variation in both  and  to underpin inference. This is model-based inference, 

primarily because it is standard to use a stochastic model to describe variability in the 

population  values, with the implicit assumption that variability in the population  values 

is under the control of the sample designer. 

  
yws = wis Ii yii=1

N∑

µ
  
yU = N −1 yii=1

N∑

 Ii

 yi

  i ∈U : Ii = 1{ }

 wis

 wis

µ µ  yU

µ

 yws

 Ii

 yi

 Ii  yi

 yi  Ii
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A further assumption that is often made in this context is the conditional independence 

assumption (CIA) 

 

where  and are the population values of  and ,  denotes independence and the 

conditioning is with respect to known information about the population U which we denote 

here by a known  matrix . A sampling procedure for which the CIA is valid for 

some  is commonly referred to as non-informative sampling, with the restriction implied 

by the conditioning on  often ignored. However, as the CIA makes clear, it is this 

conditioning that is important. Sampling that is non-informative given  may not be so if 

 is unavailable, or if just a part of it is available. 

 

It is easy to see that if the CIA holds then the realized values  of the sample inclusion 

indicators are ancillary for inference about  and so inference can condition on them, i.e. 

condition on the realized value of the set s. A pure model-based approach is then where it is 

just the variability in  that drives inference. Model-assisted inference is a widely used 

compromise between design-based inference and pure model-based inference that allows for 

both sources of variability even under non-informative sampling. This approach is often 

assumed to provide both the non-parametric robustness of the design-based approach and the 

parametric efficiency associated with the pure model-based approach. However, this may not 

be the case, as we shall see. 

 

1.2 Why this paper? 

 

The aim of this paper is to provide an overview of the important issues that arise when using 

survey weights for inference, both in the context of Chris Skinner's major contributions in the 

area and in the context of closely related issues that arise in causal inference. The desirable 

properties of consistency and double robustness for weighted survey estimators are discussed 

in the next Section, with Chris's major contributions to improving the efficiency of weighted 

survey estimates discussed in Section 3. Then in Section 4 we focus on causal inference and 

the classic problem of estimating a causal effect from observational, or secondary, data. In 

  yU ⊥ IU XU

  IU   yU  Ii  yi ⊥

 N × p   XU

  XU

  XU

  XU

  XU

  IU

µ

  yU
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this section we also develop a doubly robust estimator for an additive causal effect that 

behaves similarly to a model-assisted estimator, in that it uses a model to control for bias 

caused by differences in covariate distributions between treated and untreated groups. In 

Section 5 we apply the methods developed in Section 4 to a new analysis of a data set 

collected in a six-year rainfall enhancement trial. Section 6 completes the paper with a more 

discursive summary of the ideas in it and the results obtained. 

 

2. Consistency and robustness under weighted inference 
 

Chris Skinner firmly believed that model-assisted inference should be the default approach to 

sample survey inference. His basis for this belief was simple: Defining a statistical model for 

 given just the sample values  will almost inevitably result in model 

misspecification, in the sense that it will not lead to the same model as would be obtained 

given . On the other hand, the properties of the sample inclusion indicators  are known 

(or at least should be known) to the survey sampler, and these determine whether an estimator 

of interest is design-consistent, i.e., it converges in probability to its design expectation as the 

sample size increases. Restricting weights  to use in  so that this estimator 

is design-consistent should therefore be a minimum requirement. Modelling assumptions can 

subsequently be introduced to improve the efficiency of  assuming that the model holds. 

However, this efficiency is a secondary consideration. 

 

To illustrate, consider the classic design-based version of . This is the inverse probability 

weighted (IPW) estimator corresponding to the Hájek (1971) version of the Horvitz and 

Thompson (1952) estimator for a finite population mean, where . 

Here  is the known sample inclusion probability. Put . The IPW 

estimator  is consistent for  under any model for  when the CIA is valid since then 

. As a consequence, 

under suitable regularity conditions it follows that 

  yU    ys = yi;i ∈s{ }

  yU  Ii

   ws = wis;i ∈s{ }  yws

 yws

 yws

  
wis = wis

IPW = π i
−1 π j

−1I j
U
∑

  
π i = E Ii XU( )   

µi = E yi XU( )
 yws

IPW µ  µi

   
E Iiwi yi XU( )− µi = E Iiwi( yi − µi ) XU( ) = E Iiwi XU( )E yi − µi XU( ) = 0
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. 

 

Unfortunately, as is well known, the IPW estimator can be inefficient. Also, sample inclusion 

probabilities for sampled units must be known. This is usually not an issue under full 

response. However, full response is rare, and non-response is usually the case. The probability 

of sample inclusion then includes the (typically unknown) probability of response. It is also 

an issue for observational studies where sample inclusion can depend on characteristics of 

population units that are not captured in , including the value  itself. We return to this 

issue later. 

 

Improving on the efficiency of the IPW estimator has been the focus of much research over 

the last fifty years, with most of it is based on the CIA. As we have already noted, the sample 

inclusion indicators are irrelevant for inference about  in this case, and so the vector  of 

efficient sample weights can be chosen to minimize  subject to 

. Let  denote these model-based weights, 

with associated estimator . Then by construction, 

 

and so  is model-consistent (but not necessarily design-consistent) for 

. Note that the final expectation assumes that  is a 

random draw from a conceptual set of finite population values, often referred to as the 

underlying superpopulation. 

 

To illustrate, suppose that  where the first column of  is , , 

 and . Here  is the N-vector with each element equal to 1. 

Then . More sophisticated models (e.g., those with random effects) are 

discussed in Chapters 13 and 15 of Chambers and Clark (2012). 

   

E yws
IPW( )− µ = E E

π i
−1Ii yi

U
∑

π i
−1Ii

U
∑

− N −1 yi
U
∑
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⎝

⎜
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Var yws − yU XU( )

   
E yws − yU XU( ) = µws − µU = 0

   
ws

MB = wi
MB;i ∈s{ }

 yws
MB

  
E yws

MB XU( ) = wi
MBµi

s
∑ = µU

 yws
MB

  
µ = E E yU XU( )( ) = E µU( )    yU ,XU( )
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The adage that all models are wrong applies in survey sampling as much as it does in statistics 

generally. This concern, echoed in many of the papers that Chris Skinner had a hand in, leads 

to a compromise between design-based inference and model-based inference that is 

commonly referred to as model-assisted inference. The basis of this approach, insofar as 

estimation is concerned, is the idea of using design-based estimation to ensure that a model-

based estimator is also design-consistent. This is accomplished by adding a design-consistent 

bias correction to the model-based estimator, leading to the estimator 

 

where  is the IPW-weighted estimator of the average of the residuals  and 

 is the population vector of fitted values under the assumed model, with mean . That is, 

if the linear model defined in the preceding paragraph is correctly specified then  

 

where  is the population vector of actual sample inclusion probabilities (which do not 

necessarily have to be the same as the assumed inclusion probabilities), while 

 

and so  as well. 

 

The convergence behavior indicated above will depend on regularity conditions, chief among 

which is the CIA. Note that since  it follows that if the sample 

inclusion probabilities used in  are the same as the actual sample inclusion probabilities 

 then  is the design-consistent IPW estimator  minus a design-consistent estimator 

of zero. It follows that  will have the same asymptotic repeated sampling behaviour as 

  
yws

MA = yws
MB + yws

IPW − µ̂ws( ) = µ̂U + rws
IPW

 rws
IPW

   rU = yU − µ̂U

  µ̂U   µ̂U

   

E yws
MB( ) = E ws

MB( )T
ys{ }

= E E xU
T XU

T diag(πU )XU( )−1
XU

T diag(πU )yU( ) XU( ){ }
→ E xU

Tβ( ) = µ

 πU

   

E rws
IPW( ) = E E yws

IPW − xs
T β̂ yU ,XU( ){ }

→ E E yU − xU
T XU

T diag(πU )XU( )−1
XU

T diag(πU )yU XU( ){ }
→ xU

Tβ − xU
Tβ = 0

 
E yws

MA( ) = E yws
MB( ) + E rws

IPW( )→ µ

  
yws

MA = yws
IPW − µ̂ws − µ̂U( )

 wis
IPW

 π i  yws
MA

 yws
IPW

 yws
MA
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 irrespective of whether the model for  is correctly specified or not. That is,  

is design-consistent for  (and hence ) even when the assumed model for  is 

incorrectly specified. Alternatively, as we have shown above,  is also model-consistent 

for  when the model for  is correctly specified, irrespective of whether the sample 

inclusion probabilities used in  are correct or not. This dual property of  is often 

referred to as double robustness. Estimators with a double robustness property have been 

extensively studied in recent years, see Bang and Robins (2005), and have been promoted as 

allowing an analyst to have the best of both worlds – protected against misspecification of the 

model for  if the sample inclusion probabilities are correctly specified, and protected 

against misspecification of sample inclusion probabilities (as would be the case under sample 

non-response) if the model for  is correctly specified. 

 

Of course, as has been pointed out by many (see Kang and Schafer, 2007), the usual situation 

is where both the sample inclusion probabilities and the model for  are incorrectly 

specified. Because of the ubiquitous nature of non-response, this will still be the case for 

"well-designed and implemented" surveys. From a pure model-based perspective there appear 

to be at least two things one can do to protect oneself in this case. The first is to adopt a 

flexible specification for the model for , as in a non-parametric regression 

specification for . The second is to replace the IPW weights  in the bias correction 

term  in  by alternative weights that allow for more accurate estimation of the 

population value of this bias. As Chambers, Dorfman and Wehrly (1993) point out these two 

strategies lead to the same estimator if the same non-parametric regression-based weighting 

scheme is used in both. They also point out that the idea of nonparametrically bias correcting 

a model misspecification bias is essentially an extension of Tukey’s idea of “twicing” when 

fitting a potentially incorrectly specified model. 

 

Other approaches to dealing with model misspecification as well incorrect sample inclusion 

probabilities that are more in line with the idea of double robustness have also been 

suggested. For example, Chen and Haziza (2017) suggest that alternative models for  

 yws
IPW

  yU XU  yws
MA

 yU µ   yU XU

 yws
MA

µ   yU XU

 wis
IPW

 yws
MA

  yU XU

  yU XU

  yU XU

  yU XU

 µi  wis
IPW

 rws
IPW

 yws
MA

  yU XU
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be considered as well as alternative sample inclusion probability specifications, with  

then computed based on a suitably averaged fitted value for  and a similar composite value 

for . They show that such a multiply robust specification for  can improve on any 

version of this estimator that uses just one of the alternative models for  and just one of the 

different sample inclusion probability specifications – provided at least one of these 

alternatives is correct. We do not pursue this idea further here beyond noting that in most 

practical situations it is unlikely that any of the potential alternative specifications will be 

true, so the utility of this approach will depend on its capacity to reduce the variability of 

. Some empirical evidence for this is provided in Chen and Haziza (2019). 

 

3.  Chris Skinner's impact on sample weighting methodology 
 

3.1 Contributions to weighting under non-informative sampling 

 

If one accepts the CIA and that the known values of  correctly represent the actual sample 

inclusion probabilities (as would be the case under controlled probability sampling and full 

response), then the main issue with both  and  is their variability compared to . 

This is basically due to the variability induced by the unit specific "representative" weights 

 used in both. In a pioneering paper, Skinner and Mason (2012) investigate how this 

variability can be reduced while at the same time retaining the desirable design-consistency 

property of the former two estimators. In the context of the development so far, their approach 

corresponds to replacing the  by modified unit-level weights of the form 

 

where  is a function of , and is chosen in order to minimize the variance of the solution 

 to the estimating equation 

 

with . Note that with this definition, 

. 

 yws
MA

 µi

 π i  yws
MA

 µi

 yws
MA

 π i

 yws
IPW

 yws
MA

 yws
MB

  π i
−1

  π i
−1

  di
IPWX = π i

−1qi

 qi   x i

 µ̂

  
wis

IPWX Ii yi − µ̂( )
U
∑ = 0

 
wis

IPWX = di
IPWX d j

IPWX I j
U
∑

   
E wis

IPWX yi
s
∑⎛⎝⎜

⎞
⎠⎟
→ E π i

−1qi Ii yi
U
∑ XU

⎛
⎝⎜

⎞
⎠⎟

E π i
−1qi Ii

U
∑ XU

⎛
⎝⎜

⎞
⎠⎟
→ qiµi

U
∑ qi

U
∑ → µ
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Using a linearization argument, and assuming Poisson sampling of population units, these 

authors show that the optimal value of value of  is , in which case 

. 

 

There is a subtle but important change in the inference framework used in the preceding 

development. In particular, the inclusion probabilities  are now being treated as 

unknown random variables rather than as known functions of the values in , putting their 

values on a par with the values  of the response variable. This is important in many 

practical applications where these probabilities are unknown functions of the values in  

and, as is often the case with secondary analysis of survey data, where the values of  are 

only known for the observed sample. Note also that the modified IPW estimator 

 is no longer design-consistent for the population mean  but instead 

converges to the q-weighted version of this mean. 

 

3.2 Contributions to weighting under informative sampling 

 

But there are situations where the CIA does not hold under conditioning on the available 

values in . As noted earlier, such cases arise when  is only partially available. 

However, it can also be the case that even if  is completely specified, sample inclusion 

can depend on  as well as . This type of sampling is typically referred to as informative 

sampling. One example where informative sampling is of concern is in the secondary analysis 

of survey data, where the analyst has access to the sample values of  and , as well as 

, but believes that the agency that created the sample did so using information on another, 

unreleased, variable Z. Furthermore, given , the values of Z (and hence the realized values 

of the sample inclusion indicators I) and the response variable Y are correlated. This clearly 

violates the CIA. 

 

 qi    
qi = E π i

−1 XU( ){ }−1

   
wis

IPWX = π i
−1 E π i

−1 XU( ){ }−1
π j

−1 E π j
−1 XU( ){ }−1

I j
U
∑

  
π i = E Ii XU( )

  XU

 yi

  XU

 π i

 
yws

IPWX = wis
IPWX yi

s
∑  yU
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In a subsequent paper, Kim and Skinner (2013) extended the minimum variance weights 

concept of Skinner and Mason (2012) to the case of informative sampling, i.e., where the 

probability of sample inclusion also depends on the value of the response variable of interest. 

Inverse probability weights can exhibit wide variability in this situation. In order to address 

this problem, Beaumont (2008) assumes that the sample inclusion probability  can now be 

written . Put 

 

where the last equality follows from Pfeffermann and Sverchkov (1999). Then 

 

 and we have . It immediately follows that the IPW 

estimator based on the smoothed value  instead of  is also consistent for . Let  

denote the IPW estimator based on the smoothed . Then, since  

 

we have  and hence 

. 

That is, the smoothed version of the IPW estimator will usually be more efficient than the 

"standard" version of this estimator. 

 

The key contribution of Kim and Skinner (2013) was to improve upon this smoothing 

approach to weighting under informative sampling by combining it with the optimal 

weighting approach developed in Skinner and Mason (2012). Using similar approximations to 

those used in this last reference, including assuming Poisson sampling, they consider a 

modified smoothed weighting scheme with unit weights  and seek to identify the value 

of  that minimizes the asymptotic variance of the IPW estimator based on these unit 

weights. This leads to the optimal value and modified smoothed 

IPW weights 

. 
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Finally, we note that application of both the Beaumont (2008) approach and the Kim and 

Skinner (2013) approach to computing a more efficient IPW estimator of  under 

informative sampling requires estimation of  followed by estimation of 

. This can be done by using the sample data to fit an appropriate 

parametric model to these expectations. In particular, Kim and Skinner (2013) suggest that a 

model of the form  will usually be adequate, with 

the values of  then computed by bootstrapping from the sample values 

. However, it is important to note that this approach, 

as well as its simpler version when the CIA holds, depends crucially on the sample inclusion 

probabilities being known. In many practical applications of secondary analysis of sample 

data this is not the case, particularly when there is reason to believe that the sampling was 

informative. This is the problem that we now address. 

 

4. But what if inclusion probabilities are unknown? 
 

4.1 A brief overview of causal inference using secondary data 

 

Neyman (1923) explicitly defined a framework of potential outcomes with the aim of making 

causal inferences using the data collected in a randomized experiment. The simplest version 

of this framework is where each unit in the experiment population has just two potential 

outcomes, defined as  and  when the unit is a control and when it is treated, 

respectively. That is, 	denotes the outcome that would be realized for the unit if it were 

not to be treated and  denotes the outcome that would be realized for the same unit if it 

were to be treated. Let X denote relevant covariates for the experiment population. A key 

target of causal inference is the difference 

 

between the population expectation of  and the population expectation of , which 

we refer to as the causal effect D. Note that D is the expected value of the difference between 

the population averages of Y(1) and Y(0). Clearly, both these outcomes cannot be observed for 

µ

   
E π i

−1 yi , Ii = 1,XU( )

    
E !π i

−1( yi − µi )
2 XU( )

   
E π i

−1 yi , Ii = 1,XU( ) = 1+ exp(−φ1
T x i −φ2 yi )

    
E !π i

−1( yi − µi )
2 XU( )

   
1+ exp(−φ̂1

T x i −φ̂2 y j ){ }( y j − µ̂i )
2 , j ∈s{ }

  Y (0)   Y (1)

  Y (0)

  Y (1)

   
D = E Y (1) X( )− E Y (0) X( )

  Y (1)   Y (0)
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the same unit, and so the basic problem with estimating D is in imputing the missing potential 

outcomes for those units where only one outcome has been observed. That is very similar to 

the problem of item non-response in survey sampling, except here there are no units with full 

response. 

 

For the causal effect D to be identifiable, the mechanism through which treatment is assigned 

to a particular unit needs to be restricted so that the assignment probability is independent of 

the potential outcomes as well as the values of covariates for other units. This is usually 

summarized in three basic properties of the assignment mechanism:	

• Individualistic assignment. That is, the probability of a unit being assigned to the 

treatment only depends on the covariates of that unit and not the values of the 

covariates for other units. Following Rubin (1980), this condition is sometimes 

referred to as the Stable Unit Treatment Value Assumption. 	

• Probabilistic assignment: This condition is familiar to survey samplers and states that 

every unit in the population has a probability of being treated that is strictly between 

zero and one for all units (Rosenbaum and Rubin, 1983). This probability is usually 

referred to as a propensity score, or just a propensity. 

• Unconfounded assignment: This assumption is essentially the CIA for treatment 

assignment, in that it states that this assignment is independent of any potential 

outcomes conditioned either on known covariates	or on the propensity scores.	

The probabilistic and unconfoundedness properties are essentially the strong ignorability 

assumption of Rosenbaum and Rubin (1983).	

 

Unfortunately, perfectly randomized experiments, although desirable, are not always feasible. 

Instead, we often have to make do with observational or secondary data when carrying out (or 

at least trying to carry out) causal inference. In this context, we usually relax the classical 

assumption that the probability of treatment assignment is known for all population units, and 

estimate it from the realized values of treatment assignments (which are all assumed known). 

As noted earlier these estimated probabilities are usually referred to as propensity scores, a 

convention that we now adopt. The three common strategies used to estimate D are then 

model-based imputation, where a regression model is used to impute the counterfactuals (Y(0) 

for a treated unit and Y(1) for a control, or untreated, unit), weighting estimators and matching 

estimators. Both weighting and matching require knowledge of propensity scores. In this 

paper we focus on the simplest type of weighting estimator of D, the Inverse Probability 
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Weighted or IPW estimator. We then combine this estimator with a model for the observed 

data to obtain an estimator of D that has the desirable property of being doubly robust, i.e., it 

is consistent for D provided either the propensity model is valid, or the observed data model is 

valid.	

 

4.2 Two estimators for D that use propensity scores 

 

Let  denote the value of a response Y for unit i in a sample of n units taken from a 
population U of N units, with  equal to  if unit i is exposed to a treatment, and  if not. 

Put  with  and . Here  denote known 

sample covariate information, unrelated to treatment exposure, and put . Similarly 

put  for j = 0, 1. Furthermore, let  denote membership of the treatment 

subsample (i.e., sample units exposed to the treatment) and  denoting membership of 
the control subsample (i.e., those sample units not exposed to the treatment), with 

. It immediately follows that . However, as we have 

already noted, the mechanism underpinning exposure is unknown. If  is known for all 
sample units the IPW estimator of , also referred to as the Average Treatment 
Effect, is 

 

where  and . The more common 

situation, though, is where  is unknown but can be modeled as , where  is a 
known function. Then  can be estimated from the sample values of  and , leading to 

the estimator , where  is a vector of estimated parameter values. This leads to 
the plug-in IPW estimator 

. 

The estimated probabilities  are the propensity scores, and it is easy to see that if the model 

for  is valid and the three basic assumptions listed in Section 4.1 hold when we condition 

on  then  is consistent for D. 

 

The estimator  does not explicitly control for different covariate distributions between 

the treatment and control subsamples, assuming instead that these differences cancel out "on 

average". In many situations, however, these differences account for a significant portion of 

the variation in the treatment and control response values. A simple way of accounting for 

 yi

 yi   y1i   y0i
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these sources of variation is to assume additive treatment effects, that is , with  

then defining the treatment effect for sample unit i. Substituting in , we see that 

 

where  and  is the value of when  is replaced by . However, 

there are no treatment effects distinguishing the "treated" units from the "control" units in 

, so this term is purely an estimate of the differential impact of the population covariates 

on the realized value of , something that is asymptotically zero but can be non-zero in 

any finite sample. It follows that  is then a covariate-adjusted estimator of D. 

Note that calculation of  requires estimation of , say by . Since the predicted value of 

 for a treated unit is then , it follows that we can estimate  by replacing 

the unobservable values  for treated units by . We denote this estimate by . Our 

estimator of  is then 

 . (1) 

A simple way of calculating  is to fit the model  to the entire 

sample. Here m is a specified function of  (e.g., a linear function),  is a vector of fixed 

effect parameters, and  is a suitably specified random effect. We illustrate this approach in 

the application discussed in the next section. 

 

4.3  is doubly robust 

 

In the previous sub-section, we introduced , a covariate-adjusted estimator of the average 

treatment effect D defined by the difference between the IPW estimator of D and the same 

estimator but with all observed values  replaced by control values . Substituting model-

based estimates for the treated units values of  (which are unobserved) then leads to the 

estimator  defined in (1) above. Note that the first term in  is an estimate of D while the 

second term corrects for treatment / control imbalance in the baseline covariates and the error 

terms of the assumed model. In a randomized trial these two sources of imbalance tend 

  y1i = λi + y0i  λi
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asymptotically to zero. However, they are not necessarily equal to zero in a finite sample 

situation. 

 

In a causal inference context a doubly robust (DR) estimator is the one that remains consistent 

if either the model for treatment assignment or the model for the counterfactual outcome (but 

not necessary both) is correctly specified. Double robustness is often viewed as a desirable 

property for an estimator since there is usually a good chance that either of these models is 

incorrectly specified. Rotnitzky, Robins and Scharfstein (1998) proposed the Augmented 

Inverse Propensity Weighted estimator as a DR estimator in missing data situations and 

Scharfstein, Rotnitzky and Robins (1999) showed how to construct a DR estimator for causal 

inference under unconfoundedness. For a more recent discussion of DR see Bang and Robins 

(2005). Below we show that  is a doubly robust estimator of D. 

 

We shall assume the general additive treatment effect specification 

 

 so that . Substituting in (1) leads to 

 

That is, 

  (2) 

where  is the population residual for . Unconfoundedness implies that these 

residuals will have expectation zero if the model for the control or untreated outcome is valid, 

in which case the summation on the right hand side of (2) above will have zero expectation 

irrespective of whether the model for treatment assignment is valid or not. Alternatively, if the 

model for the treatment assignment is valid then unconfoundedness again implies that the 

distribution of the control model residuals will be the same in both the treated and untreated 

parts of the population of interest, in which case the summation on the right hand side of (2) 

corresponds to the difference of two unbiased estimators of the same expected value, and so 
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has expectation zero irrespective of whether the control model is correctly specified or not. 

That is,  has the same expectation as  in both these situations and so is a doubly robust 

estimator of D. 

 

5. An application of model-based causal inference: Rainfall enhancement in 

Oman 
 

5.1 Background 

 

A randomized trial of a ground-based rainfall enhancement technology was carried out in the 

Hajar Mountains of Oman 2013 – 2018. The hypothetical mechanism for rainfall 

enhancement because of operation of this technology is via downwind transport of natural 

aerosols that have become ionized following exposure to an operating ionizer, resulting in 

larger raindrop formation downwind and hence heavier rain than would be the case if the 

ionizer was not operating. During the trial, ionizers were operated according to a randomized 

daily operating schedule, subject to equal numbers of ionizers being switched on and 

switched off each day. However, it is impossible to randomize the exposure of any particular 

downwind rain gauge to an operating ionizer since this depends on whether the gauge is 

downwind of the operating ionizer, and the downwind direction changes daily according to 

prevailing meteorological conditions. 

 

Our aim here is to test the causal hypothesis that exposure to an operating ionizer led to 

enhanced rainfall in rain gauges that were downwind of installed ionizers in the Hajar 

Mountains over 2013 – 2018. Our observation units are gauge-days, with a positive rainfall 

value at a gauge on a day classified as a target value when that gauge is downwind of at least 

one operating ionizer on the day. Otherwise, it is classified as a control value. From a causal 

perspective, target values are “treated” values, while control values are “untreated”. We 

consider two types of rainfall measurements, actual rainfall (Rain), defined as positive values 

of rainfall, and the logarithm of actual rainfall (LogRain), with the latter of more interest 

given the huge skewness in the distribution of actual gauge-day rainfall measurements in the 

Hajar Mountains 2013 – 2018. 

 

 λ̂  !λ
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Let Y denote either Rain or LogRain for an actual rainfall gauge-day, and let I denote the 

zero-one indicator for whether an actual rainfall gauge-day value is a control value (I = 0) or a 

target value (I = 1). Put , where X denotes a vector of 

covariate measurements such that it is reasonable to assume that Y and I are conditionally 

independent given X. There were n = 4168 actual rainfall gauge-day observations spread over 

488 days during 2013 – 2018 for the Hajar Mountains trial, and we seek to test the hypothesis 

that, on average, those observations that were exposed to an operating ionizer (i.e., the target 

observations) were significantly larger than those that were not (i.e., the control observations). 

By “on average” here we mean over the 4168 gauge-day values of actual rainfall that were 

observed 2013 - 2018. 

 

The full duration of the Hajar Mountains trial over 2013 – 2018 was 849 days. However, 

wind direction data were missing for 109 of these days, mainly between 2015 and 2018. This 

was essentially due to problems with the operation of the radiosonde at Muscat International 

Airport. Since these wind direction data are necessary to determine whether a gauge-day 

rainfall measurement is downwind or not (and hence allocatable as either a target or a control 

value), this meant that the final analysis of the trial data is restricted to the 740 days for which 

wind direction data were available. Ionizer operations over the entire trial were carried out 

according to a balanced randomized operating schedule, so a more detailed analysis of the 

trial reported in Chambers et. al. (2021) treats the missing days as missing completely at 

random, since there seems no obvious reason to link issues with radiosonde operation at 

Muscat International Airport with ionizer operation in the Hajar Mountains. However, it can 

also be argued that a link could exist between prevailing meteorological conditions (and 

hence rainfall over the mountains) and operation of the Muscat radiosonde. Consequently, it 

becomes important that one also takes account of the possible informativeness of the sample 

of days when wind directions were available. This is the issue that we address in this section, 

referring the reader to Chambers et. al. (2021) for a more comprehensive model-based 

analysis of the trial data that ignores this potential source of bias. 

 

5.2 Estimation of average target effects via propensity weighting 

 

Let i index gauge and j index day. We define the average target effect D as the difference 

between the average response values for the 2176 target gauge-days and the 1992 control 

   
π (x) = Pr I = 1 X = x( ) = E(I X = x)
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gauge-days over the trial when actual rainfall was recorded downwind of the installed 

ionizers. In order to calculate the IPW estimator of D we first need to model the propensity 

score associated with gauge-day . This is the estimate of the expected value  for the 

binary indicator  defined by the target status (target/control) of rainfall on gauge-day  

conditional on a covariate  reflecting observed meteorological conditions on day j. We use 

a logistic specification for . Standard model searches lead to the specification, with 

associated estimated parameter values, set out in Table 1. All terms are highly significant and 

are given by 

• An index for storm development potential (total.totals); 

• First principal component of average dry air temperature (temp.dry.1); 

• First principal component of average relative humidity (relh.1); 

• First principal component of average ground level air pressure (pres.1). 

Note that principal components were based on daily 10:00 – 20:00 average values computed 

across the network of automatic weather stations located in the Hajar Mountains. 

 

Table 1: Parameter estimates for fitted propensity score model 
Term Estimate Std Error ChiSquare Prob>ChiSq 

Intercept  -0.753 0.225 11.166 0.001 

total.totals 0.016 0.005 10.499 0.001 

temp.dry.1  -0.172 0.040 18.332 0.000 

relh.1  -0.110 0.025 19.839 0.000 

pres.1  -0.115 0.024 22.718 0.000 
 

Propensity score weighted average actual rainfall based on the 2176 target gauge-day values 

was 4.853mm, with a corresponding weighted average value for LogRain of 0.554. In 

comparison, weighted average actual rainfall based the 1992 control gauge-day values was 

4.640mm, with a corresponding weighted average value for LogRain of 0.480. However, 

there was a large outlier in the control values of actual gauge-day rainfall. When this value is 

removed, weighted average actual rainfall for control gauge-days reduces to 4.560mm. These 

values imply an estimate  = 0.293mm (with outlier removed) for Y = actual rainfall and 

  = 0.074 (using all values) for Y = LogRain. 

 

 ij    
π (x ij )

 
Iij  ij

  
x ij

   
π (x ij )

  D̂ IPW

  D̂ IPW
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The sample design for the Hajar Mountains trial was such that on any given day a random 

half of the installed ionizers were operated, with the remaining half not operated, with the aim 

of ensuring treatment-control balance in exposure to daily meteorological conditions. 

Assuming these conditions were uniformly distributed across the trial area, this should have 

led to the number of target gauge-day observations downwind of the operating ionizers each 

day being approximately the same as the number of control gauge-day observations that were 

downwind of the non-operating ionizers. However, spatial variability in rainfall meant that 

numbers of targets and controls varied significantly from day to day. For the 488 days when 

rainfall was recorded downwind, 165 days either have no target data, or no control data. And, 

of the remaining 323 days, only 115 have at least 5 target values and at least 5 control values. 

These “Good Data” days correspond to solid circles in Figure 1. Furthermore, daily sums of 

propensity scores for the 323 days when there are data for both targets and controls track daily 

sample sizes but are very variable. See Figure 2. Finally, we note that refitting the propensity 

score model just using the data from the Good Data days leads to a rather different model 

specification compared to that shown in Table X1, which uses the data from all 488 days. 

 

Figure 1: Scatterplot showing daily numbers of target and control gauge-day observations 

with actual rainfall, Hajar Mountains trial 2013-2018. 
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Figure 2: Daily numbers of downwind gauge-days with actual rainfall (y axis) vs. daily sums 

of propensity scores for target gauge-days (x-axis, left) and control gauge-days (x-axis, right). 

Plots restricted to days when both target and control rainfall observed. Line is the identity fit. 

 
 

The propensity scores defined by the model set out in Table 1 are constant within a day (since 

they are a function of daily meteorological measurements), so daily  values reduce to 

average target rainfall minus average control rainfall on the day. Averages of these values 

based on data from 323 days with both target and control gauge-day data are positive but not 

significantly greater than zero for both Rain and LogRain. When based on data from the 115 

“Good Data” days, they are larger and significantly different from zero. This appears to be a 

consequence of the lower variability in daily values of  on “Good Data” days, when 

rainfall is more widespread. This implies correlation between daily  values and 

meteorological conditions. However, there is no evidence of correlation with the 

meteorological variables defining the propensity scores, indicating other factors beyond 

target/control propensity may be present. It is possible that one or more of these factors may 

be correlated with the response variables (Rain, LogRain), suggesting that a more complex 

analysis of the rainfall data collected in the Hajar Mountains trial is necessary. 

 

5.3 Using a random effects model for LogRain to control for unobserved sources of 

variation in rainfall 

 

An alternative model-based approach to estimation of ionizer impact on rainfall enhancement 

was used in the analysis of the Hajar Mountains trial data described in Chambers et. al. 

(2021). This approach explicitly estimated the counterfactuals defined by control values for 

target gauge-day observations. A key component of this analysis involved fitting a linear 

  D̂ IPW

  D̂ IPW

  D̂ IPW
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model with random day effects to the downwind LogRain values obtained in the trial. This 

model is specified in Table 2. It depends on daily meteorology via another linear model with 

random day effects fitted to LogRain values from gauges that were upwind of the ionizer sites 

each day. These gauge-day readings should be unaffected by ionizer operation but should also 

be strong predictors of "natural" rainfall downwind of the ionizers. Fitted values from this 

upwind model (denoted Upwind LogRain in Table 2) were therefore used as a measure of 

expected downwind control rainfall, and were combined in the downwind model for LogRain 

with two elevation measures, Gauge Elevation 1 equal to gauge elevation when this value is 

1km or less and is zero otherwise, and Gauge Elevation 2, equal to gauge elevation when this 

value is greater than 1km and is zero otherwise, together with indicator variables for the year 

the data were obtained, with 2015 as the reference year (these variables are denoted y2013, 

y2014, y2016, y2017 and y2018 below). Over the course of the trial, there were ten ionizers, 

denoted H01 – H10, that were operated, with H01 and H02 operated in 2013, H01 – H04 

operated in 2014, H01 – H06 operated in 2015, H01 – H08 operated in 2016 and H01 – H10 

operated in 2017 and 2018. This downwind model therefore included indicator variables 

(denoted Target H01 – Target H10 below) for whether the gauge-day observation was a target 

value for each of these ten ionizers H01 – H10 on the day. The REML estimates of the 

variance components for the downwind LogRain model are set out in Table 3, with the 

distribution of predicted Day effects generated by this model shown in Figure 3. 
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Table 2: Fitted parameter values with estimated standard errors and associate p-values for the 

downwind LogRain model. Significant p-values are displayed with an asterisk. 

Term Estimate Std Error t Ratio Prob>|t| 
Intercept 0.077 0.121 0.633 0.5269 
y2013 0.406 0.113 3.581 0.0004* 
y2014 0.336 0.106 3.153 0.0018* 
y2016 0.259 0.115 2.241 0.0257* 
y2017 0.092 0.119 0.774 0.4397 
y2018 0.041 0.146 0.277 0.7821 
Gauge Elevation 1  -0.200 0.164  -1.217 0.2237 
Gauge Elevation 2  -0.096 0.071  -1.357 0.1748 
Upwind LogRain 0.945 0.059 15.983 <.0001* 
Target H01 0.481 0.247 1.946 0.0518 
Target H02 0.840 0.293 2.867 0.0042* 
Target H03 0.241 0.092 2.613 0.0090* 
Target H04  -0.114 0.089  -1.283 0.1996 
Target H05 0.499 0.132 3.788 0.0002* 
Target H06  -0.136 0.149  -0.916 0.3598 
Target H07 0.336 0.188 1.785 0.0743 
Target H08 0.131 0.129 1.023 0.3063 
Target H09 0.711 0.307 2.319 0.0204* 
Target H10 0.196 0.170 1.149 0.2504 
Gauge Elevation 1*Target H01  -0.488 0.363  -1.342 0.1797 
Gauge Elevation 1*Target H02  -1.272 0.469  -2.714 0.0067* 
Gauge Elevation 2*Target H01  -0.163 0.159  -1.026 0.3051 
Gauge Elevation 2*Target H02  -0.458 0.172  -2.667 0.0077* 

 

Table 3: REML variance component estimates for the downwind model for LogRain 

Source Var Comp Std Error 95% Lower 95% Upper Pct of Total 

Day 0.225 0.032 0.162 0.289 10.836 

Residual 1.853 0.043 1.772 1.940 89.164 

Total 2.078 0.050 1.984 2.179 100.000 
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Figure 3: Distribution of predicted day effects generated by the downwind model for gauge-

day values of LogRain. The usual assumption of Gaussian random effects seems reasonable. 

 
 

At the end of Section 5.2 we expressed concern that the propensity scores defined by Table 1 

are not sufficient to control for the impact of unobserved variables on the difference D 

between the target average value of LogRain and the control average value of this variable. In 

particular it is possible that the achieved target/control allocation in the available data (i.e., for 

those days when radiosonde operation made it possible to identify a wind direction) may in 

fact be informative. As a consequence, we now investigate how combining the model for 

LogRain defined by Tables 2 and 3 with these propensity scores, using the doubly robust 

estimator (2), allows us to at least achieve some measure of protection against this scenario. 

 

We start by writing the model for LogRain set out in Tables 2 and 3 as 

 

where i indexes gauge and j indexes day,  is the vector of target indicator variables Target 

H01 – Target H10 plus the four interaction terms Gauge Elevation a * Target H0b; a, b = 1, 2; 

is the vector of other fixed effects in the model for LogRain, including the intercept,  is 

a random day effect and  is the gauge-day residual. Note that  is a zero vector when the 

gauge-day observation is a control value. It immediately follows that for target gauge-day 

observations we can write , where . That is, 

 and so 

  
yij = zij

Tθ + x ij
Tβ + ui + eij

  
zij

  
x ij  ui

 
eij   

zij

   
ŷ0ij = x ij

T β̂ + ûi + êij    
êij = yij − zij

Tθ̂ − x ij
T β̂ − ûi

   
ŷ0ij = yij − zij

Tθ̂
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Our estimate of D is therefore , the propensity score weighted average of the 

sum of the model-based estimates of the "target effects" defined in Table 2. Let  denote 

actual rainfall (Rain) on a gauge-day. We can then extend the definitions of  and  to 

gauge-day values of Rain by writing  for this variable. 

 

For notational simplicity we use SATE (Sample Average Treatment Effect), SANE (Sample 

Average Null Effect) and SALV (Sample Average Lambda Value) to denote ,  

and  respectively in what follows. Following Chambers et. al. (2021), we use a two level 

semi-parametric block bootstrap to calculate standard errors and associated p-values for these 

estimates, using a total of 10,000 bootstrap samples. As noted in the previous sub-section, 

there was downwind rainfall data recorded on 488 days of the trial. However, both control 

and target rainfall data were obtained on only 323 of these days. Results based on this more 

limited sample are expected to better control for daily meteorological variation and so are 

presented separately in Table 4, with Figure 4 showing the associated bootstrap distributions 

associated with the SATE and SALV. 

 

   

D̂0
IPW = wijs

π̂ Iij ŷ0ijij∑ − wijs
1−π̂ (1− Iij )y0ijij∑

= wijs
π̂ Iij yij − zij

Tθ̂( )ij∑ − wijs
1−π̂ (1− Iij )yijij∑

= D̂ IPW − wijs
π̂ zij

Tθ̂
ij∑ .

   
λ̂ = wijs

π̂ zij
Tθ̂

ij∑

 
rij

  D̂0
IPW

 λ̂

   
r̂0ij = exp yij − zij

Tθ̂( )

  D̂ IPW
  D̂0
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Table 4: Estimated values of SATE, SANE and SALV for Rain and for LogRain for all 488 

days when downwind rain was recorded in the Hajar Mountains trial, as well as for the 323 

days when both target and control rainfall was recorded. Block bootstrap standard errors and 

one-sided bootstrap p-values (bootstrap probability of no effect or negative effect) are shown 

in parentheses below estimated SATE and SALV values. 

Sample Days SATE(Rain) SANE(Rain) SALV(Rain) 
488 0.2130 

(0.3789, 0.2857) 
-0.3633 
(0.3095) 

0.5763 
(0.1806, 0.0002) 

323 0.2114 
(0.3890, 0.2937) 

-0.3850 
(0.3186) 

0.5964 
(0.1866, 0.0002) 

Sample Days SATE(LogRain) SANE(LogRain) SALV(LogRain) 
488 0.0740 

(0.0436, 0.0449) 
-0.0496 
(0.0301) 

0.1236 
(0.0316, 0.0001) 

323 0.0730 
(0.0442, 0.0459) 

-0.0508 
(0.0310) 

0.1238 
(0.0316, 0.0001) 
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Figure 4: Two level semi-parametric block bootstrap distributions for SATE and SALV for 

Rain (top row) and for LogRain (bottom row). 

 
 

 
 
A randomization analysis of the significance of the effect of ionizer operation on positive 

rainfall as measured by the different values of SATE and SALV was also carried out. This 

was done by independently randomly permuting the operating states of each ionizer each day 

(while maintaining the requirement that there were an equal number of operating and non-

operating ionizers each day). This was also done 10,000 times. The permutation p-value was 

then calculated as the proportion of permuted SATE (SALV) values that were greater than the 

observed SATE (SALV) value. These p-values are set out in Table 5 below, with the 

randomization distributions for the permuted SATE (SALV) values shown in Figure 5. 
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Table 5: Permutation p-values of SATE, SANE and SALV for Rain and for LogRain for all 

488 days when downwind rain was recorded in the Hajar Mountains trial, as well as for the 

323 days when both target and control rainfall was recorded. These p-values were computed 

as the proportion of permuted values of SATE and SANE greater than the observed values of 

these estimates. Ionizer operating states over 2013-2018 were randomly permuted a total of 

10,000 times in order to generate these permuted values. 

Sample Days p-value SATE (Rain) p-value SALV (Rain) 
488 0.2539 0.0209 
323 0.2277 0.0213 

Sample Days p-value SATE (LogRain) p-value SALV (LogRain) 
488 0.1105 0.0152 
323 0.0708 0.0153 
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Figure 5: Randomization distributions for SATE and SALV for Rain (top row) and for 
LogRain (bottom row) generated by randomly permuting ionizer operating states over 2013-
2018.  Actual observed values for SATE and SANE are shown as vertical lines in the plots. 

 

 
 

6. Summary and a conclusion 

 

As we stated at the beginning of this paper, weighting is at the core of sample survey 

inference. However, that does not mean that it is always required when analyzing sample 
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efficient model-based or model-assisted methods of inference are possible, with the primary 

distinction between these two approaches being that the first takes the model seriously and 

consequently leads to more efficient inferences than the second – provided the assumption 

that the sample inclusion probabilities are ancillary is valid. On the other hand, the second 

approach is more cautious, allowing for model misspecification by including a design-based 

bias correction. This insurance comes at a cost, however, with typically reduced efficiency if 

in fact the model is correctly specified. 

 

This paper has been written for a special issue of Series A of the Journal of the Royal 

Statistical Society commemorating the research achievements of Fred Smith and Chris 

Skinner in survey sampling. Both men were giants in the field, and it was Chris Skinner who 

produced groundbreaking research on survey weighting. Again, as noted earlier, Chris was 

very definitely a proponent of the model-assisted approach, in that he viewed a model for a 

survey variable as essentially a working hypothesis and so inevitably a misspecification of 

reality. However, he also recognized that the insurance premium in terms of loss of efficiency 

when adopting a model-assisted approach could be high, and so looked for ways to minimize 

it. This led to two ground-breaking papers with colleagues, Skinner and Mason (2012) and 

Kim and Skinner (2013), that described methods for stabilizing the variability in model-

assisted weights. These are discussed in Section 3, with the latter contribution focusing on the 

case of informative sampling, i.e., where there is incomplete knowledge of the factors 

underpinning the sample design, or where the survey response itself is a design factor. 

 

In both of the papers referred to in the previous paragraph, there is an implicit assumption that 

the sample inclusion probabilities are available. This may be reasonable when the same 

organization carrying out inference is also responsible for the survey design. However, it is 

usually not reasonable for secondary analysis, where the analyst and the sample designer may 

have no contact at all. In this situation heroic assumptions are often made about the non-

informativeness of the sample design. One important area of application where this 

assumption is usually avoided is in causal inference, where explicit models are built for 

sample inclusion probabilities. A key property of the resulting inference is then its double 

robustness, where the inference remains valid if either the sample inclusion (or allocation) 

model is correctly specified or if the assumed model for the survey variable is not 

misspecified. In fact, it turns out that this is precisely the insurance provided by adopting a 

model-assisted approach. In Section 4 of this paper we therefore focused on the most 
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straightforward causal inference scenario, where the interest is in estimating the difference D 

between the expected values of a "treated" response and an "untreated" response. Here we 

presented the standard inverse probability weighted (IPW) estimator  for D, as well as a 

new estimator (2) that, as in the model-assisted approach, modifies  for differences in 

covariate distributions between treated and untreated sample units. We also showed that (2) is 

double robust. 

 

Finally, in Section 5 we provide a real life application of causal inference using (2) based on 

data obtained in a multi-year randomized experiment investigating the use of ionization 

devices for rainfall enhancement in the Hajar Mountains of Oman. A model-based analysis of 

these data (Chambers et al., 2021) indicated that these devices led to an increase of around 

15-18 per cent in rainfall over the trial. The double robust estimator (2) was then applied to 

these data using the same rainfall model specification as in this reference, together with a 

propensity score model for whether a rainfall gauge was impacted by operation of one or 

more of these ionization devices on a day. This analysis indicated that, over all days when 

rainfall was recorded at rain gauges downwind of the devices, there was a highly significant 

average increase of 0.5763mm per gauge per day of rainfall for target gauge-days (see the 

SALV(Rain) entry in Table 4 for all 488 days when downwind rainfall was recorded). This 

can be compared with the propensity score weighted average for control gauge-days, which 

was 4.560mm after removal of an extreme outlier. That is, the estimated causal effect of 

operating the ionizers was to increase control, or "natural", rainfall by 0.5763/4.560 or around 

12.6 per cent. This is somewhat lower but still consistent with the estimates obtained by the 

pure model-based analysis reported in Chambers et al. (2021). Since both the model-based 

and double robust methods show enhancement at over 10 per cent for this trial, with both 

methodologies indicating highly significant results, it seems reasonable to conclude that the 

ionization-based rain enhancement technology used in the Hajar Mountain trial did actually 

lead to increases in rainfall. This has quite significant implications for the use of this 

technology in other arid areas similar to those that exist in Oman. 

 

  D̂ IPW

  D̂ IPW
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